
MOHS-C Cleanroom / Vacuum / Heat Resistant Couplings - Oldham Type (VESPEL)

SUS Stainless steel 🖇 Cleanroom 🏏 Electrical Insulation 👌 Heat-resistance 🔓 Chemical-proof 🖅 High Allowable Misalignment

Technical Information

• Change in static torsional stiffness due to

Analysis of outgas Unit: (v/v ppm) Component Content Hydrogen 500 or Less Inorganic Gas Carbon Monoxide 500 or Less Carbon Dioxide 500 or Less Methane 5 or Less Ethane 5 or Less Ethylene 5 or Less 5 or Less Propane Organic Gas Acetylene 5 or Less i-Butane 5 or Less n-Butane 5 or Less

• Both inorganic gas and organic gas are not more than the lower limit of determined amount and are not detected.

5 or Less

Propylene

These are initial slippage load values of hubs and a spacer.

After running-in operation, the slippage load becomes small, the load on the shaft due to misalignment becomes lowered, and the burden on the shaft bearing is reduced.

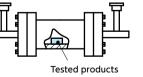
Technical Information VESPEL's physical property

Property	Test Method	unit	VESPEL
Tensile Strength	D1708	N/mm ²	160
Tensile Elongation	D1708	%	7
Bending Strength	D790	N/mm ²	247
Bending Elastic Modulus	D790	GPa	5.7
Izod Impact Value (with Notch)	D256	J/m	-
Rockwell Hardness	D785	R / M Scale	M100
Deflection Temperature Under Load (1.82MPa)	D648	C	350
Combustibility	UL94	-	V-0
Dielectric Constant (10 ⁶ Hz)	D150	-	3.3
Dielectric Loss Tangent (10 ⁶ Hz)	D150	-	0.001
Volume Resistivity (x1014)	D257	Ω∙m	1
Insulation Breakdown Strength	D149	MV/m	-
Specific Gravity	D792	-	1.43
Water Absorption (in 23°C Water × 24 h)	D570	%	0.08
Content by Percentage of Glass Fiber	-	%	-

• VESPEL's chemical resistance

• VESTEES chefnical resistance		
Property	VESPEL	
10% Hydrochloric Acid	0	
10% Sulfuric Acid	0	
50% Sulfuric Acid		
10% Nitric Acid		
50% Nitric Acid	×	
10% Hydrofluoric Acid		
50% Hydrofluoric Acid	×	
Formic Acid		
10% Acetic Acid	0	
Citric Acid	0	
Boric Acid	0	
Methyl Alcohol		
Glycol	0	
Ammonia		

O: Available \bigtriangleup : Available depending on conditions \times : Not available


• This is test data with a specimen used at room temperature (23°C). Chemical resistance changes with performance conditions. Always carry out tests under performance conditions similar to actual conditions in advance.

This is a value under the condition where the static torsional stiffness at 20°C is 100%. The change of **MOHS-C** in torsional stiffness due to temperature is small and the change in responsiveness is extremely small. If the unit is used under higher temperature, be careful about misalignment due to elongation or deflection of the shaft associated with thermal expansion.

• Measurement Method

- Inorganic gas——Gas chromatography (TCD) Organic gas——Gas chromatography (FID)
- Measurement Conditions

Couplicon®